STRESS WAVE INTERACTION WITH A PERIODIC SYSTEM
OF CURVILINEAR LONGITUDINAL SHEAR CRACKS

L. V. Volkova and L, A. Fil'shtinskii UDC 539.3

Very high stress gradients occur in bulky members with initial crack-type defects under dynamic loads,
1f there are several cracks and they are relatively close together, then even for low levels of the external ef-
fects, they grow and, eventually, merge into a main crack. Hence, for the proven design of bulky constructions
containing narrow cavities or slits it is necessary to have the sohttion of complex problems on elastic wave
interaction with the defects. In a first approximation the total stress wave field can be separated into "plane
strain" and "longitudinal shear" states. The simplest problem of stress wave interaction with a periodic sys-
tem of curvilinear cracks under longitudinal shear conditions is studied in this paper. Such a formulation af-
fords the possibility of taking account of the mutual influence of the cracks as well as their curvature on the
dynamic stress intensity coefficient. The results obtained are approximately valid even in the case when the
cracks are finite in number.,

A description of the different stationary wave processes in an elastic medium with rectilinear cracks is
contained in [1, 2] and the dynamic problem for a curvilinear crack in {3]. Results of investigations of elastic
and electromagnetic wave diffraction by periodic structures are presented in [4~7].

1. Let us consider an unbounded elastic medium weakened by a 21-periodic system of curvilinear slots
tunneled along the Oz axis l;=1 (mod 2L).

Let a monochromatic shear wave be radiated from infinity (w is the component of the elastic displace-
ment vector along the Oz axis, w is the circular frequency, and v, is the wave number)

wy = Re (We ), W, = te_w"y, T = const, (1.1)
and a load identical at congruent points and harmonic in time is given at the edges of the slots Xﬁ=Yﬁ=0, Z:ﬁ=
Rei zte-iwt},

Under these conditions, a singular, 2L-periodic wave field of the longitudinal shear stresses Ty, Tyz
occurs in the medium,

Let D be the domain occupied by the medium, and let I be a simple open Lyapunov arc with beginning at
the point @ and terminus at b, Let us assume that Z*=~ Z~ =7 be a function of class H on the closed line 7 [8],
where the plus sign refers to the left edge of I for motion from a to b (Fig. 1).
As is known, the determination of the wave fleld occurring in 2 medium with slots reduces to the boundary
value problem
52 pa

VW W =0, V¥ = — + —5,

e ay* (1.2)

- 1 4 R
(WA Wotly =125 (=0, 1, £2, = ..,
where 1 is a shear modulus of the second kind, the upper sign corresponds to the value of the parenthesis on
the left edge Ij, and differentiation is with respect to the direction of the positive normal to the left edge ;.
We determine a 2L~periodic fundamental solution of the Helmholtz equation to construct the general
representation of the solution of boundary-value problem (1.2). Let us start from the equation

VE+viE= X 8(z—2kL, y), (1.3)
Bi:m00
where (x, y) is a two-dimensional Dirac 6 function,
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Using the expansion of the 2L-periodic § function

b 2 §(@—2kD) = X 0%, oa=12F, (.4
h=—00 h=—oo
separating variables in (1.3), and using the Fourier transform in the class Dt of slow growth functions {8], we
find

E(z,9) =55 th(y)e ,

Je=—00

B =gy =t 2 ), | (1.5)

2,2
2 ok i
Tp = =T ’Vz, Vo<

where the prime on the sum denotes that the term with k=0 that yields a bounded solution of the Helmholtz equa-
tion and does not damp out as y— = should be discarded.

To extract the principal part of the fundamental solution we write the 2L-periodic fundamental sclution
E, of the highest operator in (1.3). By summing the appropriate series we obtain

4 -y fap® iz _lul
Ey(z, ¥) = 33, kgm a(y)e © = ln sin — 2L sin = 2L Li . 0.6)
al(y)‘z.“zl:‘kle—iakylf z=z4dy (k=212 %...).
Taking account of (1.5) and (1.6), we represent the fundamental solution E in the final form
E(z,y) = Ey(z, y) + E* (2, y),

i 1.7
Bz, Y =—4 k'j eI (9), a.n

N SR 1/ U S 7

fh(y) ‘rh\e lak‘e .

Therefore, the function E (x, y) defined in (1.7) satisfies the homogeneous Helmholtz equation at any point
z#2Lk (k=0,%1, +...,), possesses the characteristic singularities at the points of application of the concentrated
functional, and damps out as y— =,

After having extracted the principal part of the fundamental solution, the general term in the series in
(1.7) damps out as k™ at points of application of the concentrated functional {2Lk, 0).

2. We shall seek the solution of the boundary-value problem (1.2} in the form [3]:

W =5 (PO EC—D&—FFE—0Od| @.1)
{
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z=z+4iy, t=t+in,ze D, {=],
z=z—iy, {=E&—in,

where P({) is the desired density, and E(z—{ ) =G{&—£, y—1) is determined by means of (1.7).
The representation (2.1) yields the 2L-periodic solution of the Helmholtz equation (1.2) that damps out as
y —~©, Expanding the operator in (2.1), we obtain after manipulation

me:éﬂpwmmm+mew
gmo~MFw4—Q%} (2.2)

Gz, 0) = 21§1[akcoswsinah(z — & fuly —m)

~ sin Y cos &, (z — &) fx (y — m) sign (y — n)] — sin y sign (y — n),
where P(£) is the desired function, g(z, &) is singular, G(z, £) is a bounded kernel, and ¥ is the angle between
the positive normal to the left edge I and the Ox axis,

Passing to the limit values in (2.2) as z ~{,=1, we find the jump in the displacement w on I

Aw = w+ — w- = 2Refe~ivt (W+ — W-)} = Re{e-o! P(§;)}. 2.3)

There hence follows
P(a) = P(b) = 0. (2.4)

On the basis of (2.4), we assume that P(¢) is a function of class H [8] on the closed arc 1 that vanishes atits
ends, We represent the boundary condition (1.2) in the form
D R o
o[ W+ WO o7 [ 7+ Wy|" = 22 (2.5)
Here the upper sign refers to the value of the quantity on the left édge‘ of I during motion from a tob.

Evaluating the necessary derivatives of the function W +W, regularizing the divergent integral by inte-
grating by parts [this operation is possible because of (2.4)], and then substituting the limit values of the deriva-
tives in the boundary condition (2.5) as z—{y =1, we arrive at the singular integrodifferential equation in the
function P(£)

fP%OMLQMk+fPGHHLQM&=N@&
i

R, §0)=Im{cm"(§° D) “""} Lel,

HE, L) = 2;21 [@r (L, o) COS oty (go — &) + 04 (L, Coysm o (& — B)I, 2.6)
Or (6 Co) = @ 08 P €0 ol (Mg — M) — sin P sin Pofi, (1, — M),

01 (8 Go) = o sin (P -+ o) f;: (o — ) sign (Mg — M), Wo = P{&o)s

N (G = S22 (@) + 8Levgsinpee "7, P (D) = T

Here ds is an element of the arc I, the kernel h is singular, the kernel H is bounded, and the functions jk are
given in (1.7),

The function P'(¢) has a singularity of the square-root type at the ends of the arc I, hence, to fix the solu-
tion it is necessary to attach an additional condition to (2.6). Because of (2.4) it has the form

b
{pr@yas=o. @.7
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We introduce parametrization of the contour I by the formulas
C=5B) &= EBo) —1<B Bo<<L, a=§(—1), b=10(1) (3.1}
for the numerical realization of (2.6) and (2.7).
In conformity with the above, we set

P(L) = Q(B), P'() = Q'(B)/s'(B),

A (3.2)
Q'(B) = Qu(B)/ V1 — B2 Q'(B) = d/dp, s'(B) = ds/dp,
where 2,(8) is a function of class H on 1.
Taking account of (3,1) and (3.2), we represent Eqs, (2.6) and (2.7) in the form
ooty XG0+ | 2O RG B8 =N )
-1 0 -1
¢ n d L—t, :
for@d=o0 K@ b= Re(f g e o — plod, .9)

1

R, Bo) =15 (Bo)s" (B) H E (), Lo,
Ny (Bo) = 57 5 (o) N (G (Bo))-

The kernel K(B, By in (3.3). can possess no more than a weak singularity because of the assumptions rela-
tive to I, and the kernel R(8, B;) is bounded,

Using a procedure of Multhopp type {10], we reduce (3.3) to a system of linear algebraic equations in the
values of the desired function ©,(8) at the Chebyshev nodes

o =Ff (k=1,2,...,n),
v=1

n
—_ 1 ev —? ek 2 \ T 9
Olpy = o, cot —5—— +- K (cos 0y, cos0,) — - 1%1 sin 0, - R (08 6., €08 81) Sy, (3.4)
N' cos 7,-sin 0
cos jO,.-s1n j *
Sym = 2{ _l;_._m_7 fr= .% N (cos 6),
=
Qy = Q,(cos0,), 8, = 2v2:1 n (v=1,2,...,n).

Here the upper sign is taken in the case when |k—v | is odd, while the lower is for when |k—v | is even.

One of the equations of the system (3.4) must be discarded for the realization of the algorithm, and the
additional condition
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must be inserted instead,
4, The stresses in the medium are determined by the formulas
T, = pOW/oz, v, = powldy. (4.1)
Evaluating the appropriate derivatives, using (2.2), (3.2), and the nature of integrals of the Cauchy type in

the neighborhood of the ends of the lines of integration [8], we obtain asymptotic formulas for the stresses in
the neighborhood of the end of the slot ¢

__him {eiof, (£ 1)} 4.2)
CAVFR (D Vi—c

| T — Ty

where the upper sign corresponds to the vertex ¢ =b, and the lowertoc=a.

On the continuation beyond the crack vertex we obtain from (4.2)
_ hecosp(t 1) —~iot
S Ve (£ 1) Tm {o™0y (£ 1)1,
_ _psing(+1) —iat (4.3)
Ty YA Im {e7*'Qy (= D],
- | —int, =g
m,.-———-————4_vm Im {e7*"'Q, (£ 1)], r=jz—cj,

where the upper sign refers to the terminus b, the lower to the beginning @, and Ty, is the stress on an area that
is the continuation of the crack.

Therefore, exactly as in the static problem of longitudinal shear, crack propagation is possible only along
a smooth trajectory, We determine the dynamic stress intensity coefficient from (4.3)

Ky = lim [V 2 ] = 4 V g T (o0 (= ).

Results of computations are presented below for 2 medium weakened by a periodic system of cracks
along ares of ellipses, whose parametric representation has the form (see Fig, 1)

z = Ry sin B, y = R, cos Pp (—1 < B < 1),
1. Let the crack edges be force-free, and the monochromatic wave (1.1) be radiated from infinity, where

T = Toexp(iysRs).

Curves of the dynamic stress intensity coefficient (K,) = K;)/L/npty are presented in Fig. 2 as a func-
tion of the dimensionless time t* = mey,t/ L (¢, is the shear wave propagation velocity, and t is the time), the
dimensionless wave number @ =Ly,/7=0.9, and the relative size of the domain £,=11/L=0.2; 0.4; 0.6 (curves
1-3, respectively) for Ry =R, =0,5, ¢ =45°,1=0,392,

The curves (Kjg) are given in Fig. 3 in the same correspondence for Ry =0.25, Ry =0.5, ¢ =60°,71=0.390,
a =0,9, £=0.2; 0.4; 0.6, Here the curve 4 characterizing the change in (Kj) for a "straight" crack (R;=1,
R, =0.001,7=0,174) is given for @ =0.5 and £,=0,2. Appropriate results from [1] are superposed by points for
comparison,

2. Let 7 =0, and let a shear load harmonic in time and of constant intensity along the length of the crack
be applied to the edges of the cracks, In this case Zt=—7"=q,

Graphs of the stress intensity coefficient (Ks) =K3V L/nq are presented in Fig. 4 as a function of t* for
@ =0,9, £,=0.2; 0.4; 0.6 (curves 1-3, respectively) for cracks along the arcs of an ellipse Ry =0.25, Ry =0.5,
@ =60°,1=0.390; curve 4 displays the static case @ =0, Ry=1, Ry=0.001,7=0.174, §,=0,2,
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PLASTIC DEFORMATION UNDER A GENERALIZED
PROPORTIONAL LOADING

K. N. Rusinko and 8. A, Shlyakhov UDC 539.376

Plastic deformation is mainly the result of the displacement of one part of a crystal with respect to
another. This latter specified the creation of physical theories of residual defermations within the framework
of the slip concept [11. On the basis of one such model, an attempt is made in [2, 3] to set up 8 connection be-
tween the stress and strain in time. To do this, a temperature~time operator was introduced into the govern~
ing relationships. The operator is introduced from the following physical considerations.

As is known, plastic flow in 2 material is developed extremely inhomogeneously and results in the ap-
pearance of local peak stresses [4~7]. According to [5], the peak stresses govern the resistance to plastic
deformation to a significant degree. From an analysis of the experimental data [5-7], the deduction can be
made that this stress microinhomogeneity, meaning also the resistance to plastic deformation, depends sub-
stantially on the loading and temperature modes. A rise in the loading rate and a reduction in the temperature
resulf in an increase in the local peak stress fields, the appearance of significant elastic distortions of the
crystal lattice. Such an increase in the microinhomogeneity vesults in an increase in the resistance fo plastic
deformation, as experiments show [4, 5].

However, the role of the peak stresses is not only to delay the development of plastic deformation. It
follows from [6, 7] that the peak stresses exceeding the mean level are unstable and relsx. This laiter speci~
fies numerous effects on the macrolevel: the relaxation of macrostresses, the delay in fluidity and creep, etc.
The scalar measure, the temperature—~time integral operator I, is taken as the microinhomogeneity charac-
teristic of the stress state in a homogeneous continuous model of a solid, An approach to obtaining the operator
1 that is somewhat different from [2, 3] is proposed in this paper.

1. Let us represent an element of a polycrystalline body consisting of a large number of small particles
in which the stresses are homogeneous and to which the mechanics of a continuous medium is applicable,

Let the stresses in particles at a specific time t =8 receive the increment

Ac;; (s) = Aol (s) + Aai; (s), 1.1)

Ltvov. Translated from Zhurnal Prikladnol Mekhaniki i Tekhnicheskoi Fiziki, No, 2, pp. 170-174, March~
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