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O F  C U R V I L I N E A R  L O N G I T U D I N A L  S H E A R  C R A C K S  
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Yery  high s t r e s s  gradients  occur  in bulky m em b er s  with ini t ial  c rack- type  defects  under  dynamic loads. 
If there  a re  s eve ra l  c racks  and they a re  re la t ive ly  close together ,  then even fo r  low levels  of the ex te rna l  e f -  
fects,  they grow and, eventually,  merge  into a main crack.  Hence, for  the proven  design of bulky construct ions 
containing narrow cavit ies  o r  sl i ts  it  is n e c e s s a r y  to have the solution of complex problems  on e las t ic  wave 
in terac t ion  with the defects .  In a f i r s t  approximat ion the total  s t r e s s  wave field can be separa ted  into , 'plane 
s t ra in"  and , longitudinal  shea r ,  s tates .  The s imples t  p rob lem of s t r e s s  wave in terac t ion  with a per iodic  sys -  
t e m  of cu rv i l inea r  c racks  under  longitudinal shea r  conditions is  studied in this paper .  Such a formulat ion af-  
fords the possibi l i ty  of taking account of the mutual influence of the c racks  as well  as t h e i r  curva ture  on the 
dynamic s t r e s s  intensi ty  coefficient.  The resu l t s  obtained are  approximate ly  valid even in the case when the 
c racks  are  finite in number.  

A descr ip t ion  of the dif ferent  s ta t ionary  wave p r o c e s s e s  in an e las t ic  medium with r ec t i l i nea r  c racks  is  
contained in [1, 2] and the dynamic p rob lem for  a curv i l inear  c r ack  in [3]. Results  of investigations of e las t i c  
and e l ec t romagne t i c  wave dif f ract ion by per iod ic  s t ruc tu re s  are  p resen ted  in [4-7]. 

1. Let  us cons ider  an unbounded e las t ic  medium weakened by a 2L-per iod ic  s y s t e m  of curv i l inear  slots 
tunneled along the Oz axis lj -=- l (mod 2L). 

Let  a monochromat ic  shea r  wave be radiated f r o m  infinity (w is the component of the e las t ic  d isp lace-  
ment vec to r  along the Oz axis ,  w is the c i r cu l a r  f requency,  and 72 is the wave number) 

w 0 = Be {Woe-~t}, W 0 = ~e - t ~ ,  ~ = const, (1.1) 

and a load ident ical  at congruent points and harmonic  in t ime is  given at the edges of the slots X n =Yn =0, Z~n = 
Re { Z• -i~~ }. 

Under  these  conditions, a s ingular ,  2L-per iod ic  wave field of the longitudinal shea r  s t r e s s e s  ~xz,  r y z  
occurs  in the medium. 

Let  D be the domain occupied by the medium, and let  1 be a s imple open Lyapunov a r c  with beginning at 
the point a and t e rminus  at b. Let  us assume that  Z + = -  Z-  = Z be a function of class  H on the closed line ~ [8], 
where  the plus sign r e f e r s  to the left  edge of I fo r  motion f r o m  a to  b (Fig. 1). 

As is known, the de te rmina t ion  of the wave field occur r ing  in a medium with slots  reduces  to the boundary 
value p rob lem 

v ~ W + 7 ~ W : 0 ,  V ~= ~ ~ 
+ ~ ---y' (1.2) 

& ( W + W ~ 1 7 7  t, ( 1 =0 ,  =hi, ~=2, • . . . ) ,  

where  ~ is a shea r  modulus of the second kind, the upper  sign cor responds  to the value of the paren thes i s  on 
the left  edge lj, and di f ferent ia t ion is  with r e spec t  to the d i rec t ion  of the posit ive normal  to the left  edge lj. 

We de te rmine  a 2L-pe r iod ic  fundamental  solution of the Helmboltz equation to const ruct  the genera l  
r ep resen ta t ion  of the solution of boundary-value  p rob lem (1.2). Let  us s ta r t  f r o m  the equation 

v2E +'~IE= ~ 8(x-- 2kL, y), (1.3) 

where 6(x, y) is a two-dimensional  Di rac  6 function. 
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Using the expansion of the 2L-per iod ic  5 function 

82L(X)= ~ 8(x - -2kL)  = t ~ ~k~ ~I~ (1.4) e , ak = "Z-' 
h=--r h= - -~  

separa t ing  var iab les  in (1.3), and using the F o u r i e r  t r a n s f o r m  in the class D' of slow growth functions [9], we 

find 

E ( z , V ) -  bh(v) e , 

t -Fkvl (!. 5) b~(v)=-2~-~e ( k = •  •  : ~ . . . ) ,  

n~k 2 

where the p r ime  on the sum denotes that the t e r m  with k=0 that yields a bounded solution of the Helmholtz equa- 
tion and does not damp out as y-~ ~ should be discarded.  

To ex t rac t  the pr incipal  par t  of the fundamental solution we write the 2L-per iod ic  fundamental solution 
E 0 of the highest  ope ra to r  in (1.3). By summing the appropriate  s e r i e s  we obtain 

~ ~ '  z.~ ei~: "-~-~ ~z ~ I~I E0 (x, y) = -~- ak (y) = In sin ~Z- sin 25 4L ' (!.6) 

aj , (y )=--  2----~ ~ z = x + i y  ( k = + t , _ 2 , •  

Taking account of (1.5) and (1.6), we r ep resen t  the fundamental solution E in the final fo rm 

E (x,  y) = E0 (x, y) + E* (z ,  y), 

t Z '  ic%x 
E* (z, y) = -- -~- e h (v), 

/a (Y) = ~ e-Fh"l -- ~1%1 e-P~vl 

(1.7) 

The re f o r e ,  the function E(x, y) defined in (1.7) sa t isf ies  the homogeneous Helmholtz equation at any point 
z # 2 L k  (k=0, ~:1, ~: .... ), posses ses  the cha rac te r i s t i c  s ingular i t ies  at the points of application of Che concentrated 

functional, and[ damps out as y-~ 

Af ter  having ex t rac ted  the pr incipal  par t  of the fundamental solution, the general  t e r m  in the se r i e s  in 
(1.7) damps out as k -3 at points of application of the concentrated functional (2Lk, 0). 

2. We Shall seek the solution of the boundary-value p rob lem (1.2) in the fo rm  [3]: 

E (z - -  ~) d~ 1, (2.~.) I y p  (:)[_~ E ( z - - : ) d :  o7 W (x, y) = 2- - 
l 
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w h e r e  P(~)  i s  the  d e s i r e d  dens i ty ,  and E ( z - ~  ) = G ( x - ~ ,  y - ~ )  i s  d e t e r m i n e d  by  m e a n s  of (1.7). 

The  r e p r e s e n t a t i o n  (2.1) y i e ld s  the  2 L - p e r i o d i c  so lu t ion  of the  He lmho l t z  equa t ion  (1.2) tha t  d a m p s  out as  
y -*  o0. Expand ing  the  o p e r a t o r  in (2.1), we obta in  a f t e r  man ipu la t i on  

i 
W (x, y) = Y c  

g (z, t) = 

G(z, ~) = 2 ~ [ak 
h = l  

- -  s i n  r cos ct k ( x  - -  ~) ]~ ( y  

S P (t) [g (z, t) + G (z, t)] ds, 
l 

Im(c tg  u ( z - ~ ) d ~ }  
2 L  " ~ -  "~ 

cos ~ sin c~a (x - -  ~) fk (Y --  I]) 

- -  !1) sign (y - -  ~l)] - -  sin ip sign (y - -  ~1), 

(2.2) 

w h e r e  P(~) i s  the  d e s i r e d  funct ion,  g(z,  ~) is  s ingu la r ,  G(z, ~) i s  a bounded ke rne l ,  and ~b i s  the  angle  be tween  
the  pos i t i ve  n o r m a l  to  the lef t  edge l and the  Ox ax is .  

P a s s i n g  to  the  l imi t  v a l u e s  in (2.2) as  z - "  go ~ l ,  we find the  j u m p  in  the  d i s p l a c e m e n t  w on I 

Aw = w+ - -  w-  = 2Re{e - ~ t  (W+ - -  W-)} = Re{e -~~ P(to)}. (2.3) 

T h e r e  hence  fol lows 

P(a) = P(b) = 0. (2.4) 

On the  b a s i s  of (2.4), we a s s u m e  tha t  P(~) i s  a func t ion  of c l a s s  1=I [81 on the c losed  a r c  I tha t  v a n i s h e s  a t  i t s  
ends .  We r e p r e s e n t  the  bounda ry  condi t ion  (1.2) in the  f o r m  

H e r e  the  u p p e r  s ign  r e f e r s  to the va lue  of the  quant i ty  on the  lef t  edge  of l du r i ng  mot ion  f r o m  a to  b. 

Eva lua t i ng  the  n e c e s s a r y  d e r i v a t i v e s  of the  func t ion  W +W0, r e g u l a r i z i n g  the  d i v e r g e n t  i n t e g r a l  by  i n t e -  
g r a t i n g  by p a r t s  [this o p e r a t i o n  i s  p o s s i b l e  b e c a u s e  of (2.4)], and then  subs t i tu t ing  the  l imi t  v a l u e s  of the d e r i v a -  
t i v e s  in  the b o u n d a r y  condi t ion  (2.5) as  z - ' -~0  ~ l, we a r r i v e  a t  the  s i n g u l a r  i n t e g r o d i f f e r e n t i a l  equa t ion  in  the  
func t ion  P(~) 

P' (t) h (t, ~o) ds -[- ~ P (t) H (t, to) ds = N (~o), 
! l 

h (t, to)= Im {cot ~ e{%}, to ~ l, 
oo 

H (t ,  ~o) = 2 ~ [(p. (t, ~o) cos r162 (~Jo - -  ~) 4- o, (t, to~ "sin oz, (~o - -  ~)I, 
k = l  

q% (t, to) = a~ cos q~ cos r 0lo - -  11) --  sin r sin q~o]~ (~lo - -  q), 

(~ (t, So) = ak sin (r + r f~ (no - -  ~1) sign (11o - -  xl), r = ~P (to), 
. - i V , , n  p ,  d P  (~) 

N (So) = ---  Z (to) + 8L~5'~ sm r . o, (t) = --E7--" 

(2.6) 

H e r e  ds  i s  an  e l e m e n t  of the  a r c  l, the  k e r n e l  h i s  s ingu la r ,  the  k e r n e l  H i s  bounded,  and the  func t ions  Jk a r e  
g iven  in (1.7). 

The  funct ion  P '  (~) has  a s i n g u l a r i t y  of  the  s q u a r e - r o o t  type  at  the  ends  of  the  a r c  l, hence ,  to  fix the  so lu -  
t ion  i t  i s  n e c e s s a r y  to  a t t ach  an addi t iona l  condi t ion to  (2.6). B e c a u s e  of  (2.4) i t  ha s  the  f o r m  

b 

.! P'  (~) ds = 0. (2.7) 
(2 
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We i n t r o d u c e  p a r a m e t r l z a t i o n  of  the  con tou r  l by  the  f o r m u l a s  

f o r  the  n u m e r i c a l  r e a l i z a t i o n  of (2.6) and  (2.7). 

In c o n f o r m i t y  wi th  the  above ,  we s e t  

p(~)  = ~(~) ,  p ' (~ )  = ~'([~)Is'([3), 

Q'([$) = ~0(~)/~/--(-~-- ~ 2, ~'(~) = dQ/d~, s'(~) = ds/d~, 

(3.1) 

(3.2) 

where  g0(B) is a funct ion of c lass  H on 1. 

T a k i n g  account  of  (3.1) and (3.2), we represent Eqs .  (2.6) and (2.7) in the  f o r m  

1 1 

1 

Q' (13) d~ = 0, K (~, 13o) = Re ~SZ cot 2L ~ - ~o ' 

t S t /~ (IL ~o) = - z  s (~o) (131 H (~ @, ~ @o)), 

S t N,  (~o) = - ~  (~o) N (~ (@). 

(3.3) 

The  k e r n e l  K(fl, rio) in  (3.3), can  p o s s e s s  no m o r e  than  a w e a k  s i n g u l a r i t y  b e c a u s e  of the  a s s u m p t i o n s  r e l a -  
f ive  to  l, and the  k e r n e l  R(B, rio) i s  bounded.  

Us ing  a p r o c e d u r e  of  Multhopp type  [10], we r e d u c e  (3.3) to  a s y s t e m  of l i n e a r  a l g e b r a i c  equa t ions  in the  
v a l u e s  of  the  d e s i r e d  func t ion  g0(B) at  the  C h e b y s h e v  nodes  

t 0 v ~ 0 k  2 ~ 
0~hv = ~ cot 7 ~- K (cos 0 h , .  cos (}v) ----n ,n:z-~l sin 0m -R (cos 0m, cos Oh) 5.m, (3.4) 

7~ m l  

r = X c~ jOv'~in jOm n 
~,=~ i , /~ = ~- N ,  (cos 0~), 

~o == O0 (cos0,), 0, 2 ~ -  = 2 ~ n  ( v = t ,  2 . . . . .  n). 

H e r e  the  u p p e r  s ign  i s  t a k e n  in the  c a s e  when I k - v  I i s  odd, while  the  l o w e r  is  f o r  when I k - v  I i s  even.  

One of the  equa t ions  of the  s y s t e m  (3.4) m u s t  be  d i s c a r d e d  f o r  the r e a l i z a t i o n  of the  a l g o r i t h m ,  and the  
add i t iona l  condi t ion 
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2] a~ 

must be inse r ted  instead. 

4. The s t r e s s e s  in the medium a r e  de te rmined  by the formulas  

%z = 1~Sw/~x, "%z = ttOw/Oy. (4.1) 

Evaluating the appropria te  der iva t ives ,  using (2.2), (3.2), and the nature of in tegra ls  of the Cauchy type in 
the neighborhood of the ends of the lines of in tegrat ion [8], we obtain asymptot ic  formulas  fo r  the s t r e s s e s  in 
the neighborhood of the end of the slot  c 

lz Im {e-iat~ o (-_4-_ i)} (4.2) 

where the upper  sign cor responds  to the ver tex  c =b, and the lower  to c = a .  

On the continuation beyond the c rack  ve r t ex  we obtain f r o m  (4.2) 

c o s ,  ( +  t) I m  [e-+~ o (.4- 1)},  

~sin~(• t) IIn {e-t~ - t)], 
'~z,~ = ,1-1/~-7 ( +  t) 

!~ I m  {e-+~ o (:1: t )} ,  r = ] z - -  c l, 

(4.3) 

where  the upper  sign r e f e r s  to the t e rminus  b, the lower  to the beginning a, and Vn is the s t r e s s  on an a rea  that  
is the continuation of the crack.  

The re fo re ,  exact ly  as in the s ta t ic  p rob lem of longitudinal shear ,  c r ack  propagat ion is possible  only along 
a smooth t r a j ec to ry .  We de te rmine  the dynamic s t r e s s  intensi ty  coefficient  f r o m  (4.3) 

t r  +,+l = +  ,> h-,,- I+-'"+o(__ 1)+. 

Results  of computations a re  p resen ted  below for  a medium weakened by a per iodic  sy s t em  of c racks  
along a rc s  of e l l ipses ,  whose p a r a m e t r i c  r ep resen ta t ion  has the f o r m  (see Fig. 1) 

x = R1 sin g$, y = R~ cos ~q~ ( - - t  ~.~ ~ ~< t). 

1. Le t  the c r ack  edges be f o r c e - f r e e ,  and the monochromat ic  wave (1.1} be radia ted  f r o m  infinity, where 

= %exp(i3,2R~). 

Curves of the dynamic s t r e s s  in tensi ty  coeff icient  <Ks> = K3~-L/n~o are  p resen ted  in Fig. 2 as  a func- 
tion of the d imensionless  t ime  t* = ~c2t]L (c 2 is the s h e a r  wave propagation velocity,  and t is  the t ime),  the 
d imensionless  wave number  ~ =L'~2/Tr=0.9 , and the re la t ive  size of the domain ~o = r i l L = 0 . 2 ;  0.4; 0.6 (curves 
1-3, respect ive ly)  fo r  R l =1~ =0.5, ~ =45 ~  

The curves  (Ks> a re  given in Fig. 3 in the same cor respondence  fo r  R 1 =0.25, 1~ =0.5, ~ =60 ~, 1 =0.390, 
=0.9, ~ =0.2; 0.4; 0.6. Here  the curve  4 cha rac te r i z ing  the change in (Ks) fo r  a , s t r a i g h t ,  c r ack  (R 1 =1, 

1~ =0.001, l=0.174) is  given fo r  ~ =0.5 and ~0=0.2. Appropr ia te  r esu l t s  f r o m  [1] a r e  superposed by points for  
comparison.  

2. Let  �9 =0, and let  a s h e a r  load harmonic  in t ime and of constant intensi ty  along the length of the c r ack  
be applied to the edges of the c racks .  In this  case  Z + = - Z  - =q. 

Graphs of the s t r e s s  in tensi ty  coefficient  (Ks) =Ksq-L/~q a r e  p resen ted  in Fig. 4 as a function of t* fo r  
=0.9, 40=0.2; 0.4; 0.6 (curves 1-3, respect ively)  fo r  c racks  along the a rcs  of an el l ipse R 1 =0.25, 1~ =0.5, 
=60 ~  curve 4 displays the s ta t ic  case ~ =0, R i = I ,  R2 =0.001 , / =0.174, ~0=0.2. 
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PLASTIC DEFORMATION UNDER A GENERALIZED 

PROPORTIONAL LOADING 

K. N. Rusinko and S. A. 8hlyakhov UDC 539.376 

Plastic deformation is mainly the resul t  of the displacement of one par~ of a crystal  with respec~ to 
another. This lat ter  specified the creation of physical theories of residual deformations within the framework 
of the slip concept [1]. On the basis of one such model, an attempt is made in [2, 3] to set up a connection be- 
tween the s t ress  and strain in time. To do this, a t empe ra tu r e - t ime  operator  was introduced into the govern~ 
ing relationships. The operator  is introduced from the following physical considerations. 

As is known, plastic flow in a material  i s  developed extremely inhomogeneously and results in the ap- 
pearance of local peak s t resses  [4-7]. According to [5], the peak s t resses  govern the resistance r plastic 
deformation to a significant degree. F rom an analysis of the experimental data [5-7], the deduction can be 
made that this s t ress  microinhomogeneity, meaning also the resistance to plastic deformation, depends sub- 
stantially on the loading and temperature  modes. A r ise  in the loading rate and a reduction in the f emperature 
result  in an increase in the local peak s t ress  fields, the appearance of significant elastic distortions of the 
crystal  lattice. Such an increase in the microinhomogeneity results in an increase in the resistance to plastic 
deformation, as experiments show [4, 5]. 

However, the role of the peak s t resses  is not only to delay the development of plastic deformation. It 
follows f rom [6, 7] that the peak s t resses  exceeding the mean level are unstable and relax. This lat ter  s p e d -  
ties numerous effects on the macrolevel,  the relaxation of macros t resses ,  the delay in fluidity and creep, etc. 
The scalar  measure, the t e m p e r a t u r e - t i m e  integral operator  i, is taken as the microinhomogeneity charac- 
ter is t ic  of the s t ress  state in a homogeneous continuous model of a solid. An approach to obtaining the operator 
I that is somewhat different f rom [2, 3] is proposed in this paper. 

1. Let us represent  an element of a polycrystalline body consisting of a large number of small particles 
in which the s t resses  are  homogeneous and to which the mechanics of a continuous medium is applicable. 

Let the s t resses  in part icles at a specific time t = s  receive the increment 

L'vov. Translated f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 170-174, Merch~ 
April, 1981. Original article submitted January 30, 1980. 
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